
AZ-400T00: Designing and Implementing Microsoft DevOps solutions

Duration : 32 Hours

Audience profile

As a DevOps engineer, you’re a developer or infrastructure administrator who also

has subject matter expertise in working with people, processes, and products to

enable continuous delivery of value in organizations.

Your responsibilities for this role include delivering Microsoft DevOps solutions that

provide continuous security, integration, testing, delivery, deployment, monitoring,

and feedback. You design and implement flow of work, collaboration,

communication, source control, and automation.

As a DevOps engineer, you work on cross-functional teams that include:

 Developers

 Site reliability engineers

 Azure administrators

 Security engineers

You must have experience both administering and developing in Azure, with strong

skills in at least one of these areas. You should also have experience implementing

both GitHub and Azure DevOps solutions.

Skills at a glance

 Design and implement processes and communications (10–15%)

 Design and implement a source control strategy (10–15%)

 Design and implement build and release pipelines (50–55%)

 Develop a security and compliance plan (10–15%)

 Implement an instrumentation strategy (5–10%)

Design and implement processes and communications (10–15%)

Design and implement traceability and flow of work

 Design and implement a structure for the flow of work, including GitHub

Flow

 Design and implement a strategy for feedback cycles, including

notifications and GitHub issues

 Design and implement integration for tracking work, including GitHub

projects, Azure Boards, and repositories

 Design and implement source, bug, and quality traceability

Design and implement appropriate metrics and queries for DevOps

 Design and implement a dashboard, including flow of work, such as cycle

times, time to recovery, and lead time

 Design and implement appropriate metrics and queries for project

planning

 Design and implement appropriate metrics and queries for development

 Design and implement appropriate metrics and queries for testing

 Design and implement appropriate metrics and queries for security

 Design and implement appropriate metrics and queries for delivery

 Design and implement appropriate metrics and queries for operations

Configure collaboration and communication

 Document a project by configuring wikis and process diagrams,

including Markdown and Mermaid syntax

 Configure release documentation, including release notes and API

documentation

 Automate creation of documentation from Git history

 Configure integration by using webhooks

 Configure integration between Azure Boards and GitHub repositories

 Configure integration between GitHub or Azure DevOps and Microsoft

Teams

Design and implement a source control strategy (10–15%)

Design and implement branching strategies for the source code

 Design a branch strategy, including trunk-based, feature branch, and

release branch

 Design and implement a pull request workflow by using branch policies

and branch protections

 Implement branch merging restrictions by using branch policies and

branch protections

Configure and manage repositories

 Design and implement a strategy for managing large files, including Git

Large File Storage (LFS) and git-fat

 Design a strategy for scaling and optimizing a Git repository, including

Scalar and cross-repository sharing

 Configure permissions in the source control repository

 Configure tags to organize the source control repository

 Recover specific data by using Git commands

 Remove specific data from source control

Design and implement build and release pipelines (50–55%)

Design and implement a package management strategy

 Recommend package management tools including GitHub Packages

registry and Azure Artifacts

 Design and implement package feeds and views for local and upstream

packages

 Design and implement a dependency versioning strategy for code assets

and packages, including semantic versioning (SemVer) and date-based

(CalVer)

 Design and implement a versioning strategy for pipeline artifacts

Design and implement a testing strategy for pipelines

 Design and implement quality and release gates, including security and

governance

 Design a comprehensive testing strategy, including local tests, unit tests,

integration tests, and load tests

 Implement tests in a pipeline, including configuring test tasks,

configuring test agents, and integration of test results

 Implement code coverage analysis

Design and implement pipelines

 Select a deployment automation solution, including GitHub Actions and

Azure Pipelines

 Design and implement a GitHub runner or Azure DevOps agent

infrastructure, including cost, tool selection, licenses, connectivity, and

maintainability

 Design and implement integration between GitHub repositories and

Azure Pipelines

 Develop and implement pipeline trigger rules

 Develop pipelines by using YAML

 Design and implement a strategy for job execution order, including

parallelism and multi-stage pipelines

 Develop and implement complex pipeline scenarios, such as hybrid

pipelines, VM templates, and self-hosted runners or agents

 Create reusable pipeline elements, including YAML templates, task

groups, variables, and variable groups

 Design and implement checks and approvals by using YAML-based

environments

Design and implement deployments

 Design a deployment strategy, including blue-green, canary, ring,

progressive exposure, feature flags, and A/B testing

 Design a pipeline to ensure that dependency deployments are reliably

ordered

 Plan for minimizing downtime during deployments by using virtual IP

address (VIP) swap, load balancing, rolling deployments, and

deployment slot usage and swap

 Design a hotfix path plan for responding to high-priority code fixes

 Design and implement a resiliency strategy for deployment

 Implement feature flags by using Azure App Configuration Feature

Manager

 Implement application deployment by using containers, binaries, and

scripts

 Implement a deployment that includes database tasks

Design and implement infrastructure as code (IaC)

 Recommend a configuration management technology for application

infrastructure

 Implement a configuration management strategy for application

infrastructure

 Define an IaC strategy, including source control and automation of

testing and deployment

 Design and implement desired state configuration for environments,

including Azure Automation State Configuration, Azure Resource

Manager, Bicep, and Azure Automanage Machine Configuration

 Design and implement Azure Deployment Environments for on-demand

self-deployment

Maintain pipelines

 Monitor pipeline health, including failure rate, duration, and flaky tests

 Optimize a pipeline for cost, time, performance, and reliability

 Optimize pipeline concurrency for performance and cost

 Design and implement a retention strategy for pipeline artifacts and

dependencies

 Migrate a pipeline from classic to YAML in Azure Pipelines

Develop a security and compliance plan (10–15%)

Design and implement authentication and authorization methods

 Choose between Service Principals and Managed Identity (including

system-assigned and user-assigned)

 Implement and manage GitHub authentication, including GitHub Apps,

GITHUB_TOKEN, and personal access tokens

 Implement and manage Azure DevOps service connections and personal

access tokens

 Design and implement permissions and roles in GitHub

 Design and implement permissions and security groups in Azure DevOps

 Recommend appropriate access levels, including stakeholder access in

Azure DevOps and outside collaborator access in GitHub

 Configure projects and teams in Azure DevOps

Design and implement a strategy for managing sensitive information in

automation

 Implement and manage secrets, keys, and certificates by using Azure Key

Vault

 Implement and manage secrets in GitHub Actions and Azure Pipelines

 Design and implement a strategy for managing sensitive files during

deployment, including Azure Pipelines secure files

 Design pipelines to prevent leakage of sensitive information

Automate security and compliance scanning

 Design a strategy for security and compliance scanning, including

dependency, code, secret, and licensing scanning

 Configure Microsoft Defender for Cloud DevOps Security

 Configure GitHub Advanced Security for both GitHub and Azure DevOps

 Integrate GitHub Advanced Security with Microsoft Defender for Cloud

 Automate container scanning, including scanning container images and

configuring an action to run CodeQL analysis in a container

 Automate analysis of licensing, vulnerabilities, and versioning of open-

source components by using Dependabot alerts

Implement an instrumentation strategy (5–10%)

Configure monitoring for a DevOps environment

 Configure Azure Monitor and Log Analytics to integrate with DevOps

tools

 Configure collection of telemetry by using Application Insights, VM

Insights, Container Insights, Storage Insights, and Network Insights

 Configure monitoring in GitHub, including enabling insights and creating

and configuring charts

 Configure alerts for events in GitHub Actions and Azure Pipelines

Analyze metrics from instrumentation

 Inspect infrastructure performance indicators, including CPU, memory,

disk, and network

 Analyze metrics by using collected telemetry, including usage and

application performance

 Inspect distributed tracing by using Application Insights

 Interrogate logs using basic Kusto Query Language (KQL) queries

